Create eval
Create the structure of an evaluation that can be used to test a model's performance. An evaluation is a set of testing criteria and the config for a data source, which dictates the schema of the data used in the evaluation. After creating an evaluation, you can run it on different models and model parameters. We support several types of graders and datasources. For more information, see the Evals guide.
Body ParametersJSON
Set of 16 key-value pairs that can be attached to an object. This can be useful for storing additional information about the object in a structured format, and querying for objects via API or the dashboard.
Keys are strings with a maximum length of 64 characters. Values are strings with a maximum length of 512 characters.
The name of the evaluation.
Returns
Unique identifier for the evaluation.
The Unix timestamp (in seconds) for when the eval was created.
Set of 16 key-value pairs that can be attached to an object. This can be useful for storing additional information about the object in a structured format, and querying for objects via API or the dashboard.
Keys are strings with a maximum length of 64 characters. Values are strings with a maximum length of 512 characters.
The name of the evaluation.
The object type.
Create eval
curl https://api.openai.com/v1/evals \
-H 'Content-Type: application/json' \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-d '{
"data_source_config": {
"item_schema": {
"foo": "bar"
},
"type": "custom"
},
"testing_criteria": [
{
"input": [
{
"content": "content",
"role": "role"
}
],
"labels": [
"string"
],
"model": "model",
"name": "name",
"passing_labels": [
"string"
],
"type": "label_model"
}
]
}'{
"id": "id",
"created_at": 0,
"data_source_config": {
"schema": {
"foo": "bar"
},
"type": "custom"
},
"metadata": {
"foo": "string"
},
"name": "Chatbot effectiveness Evaluation",
"object": "eval",
"testing_criteria": [
{
"input": [
{
"content": "string",
"role": "user",
"type": "message"
}
],
"labels": [
"string"
],
"model": "model",
"name": "name",
"passing_labels": [
"string"
],
"type": "label_model"
}
]
}Returns Examples
{
"id": "id",
"created_at": 0,
"data_source_config": {
"schema": {
"foo": "bar"
},
"type": "custom"
},
"metadata": {
"foo": "string"
},
"name": "Chatbot effectiveness Evaluation",
"object": "eval",
"testing_criteria": [
{
"input": [
{
"content": "string",
"role": "user",
"type": "message"
}
],
"labels": [
"string"
],
"model": "model",
"name": "name",
"passing_labels": [
"string"
],
"type": "label_model"
}
]
}