Skip to content

Update an eval

evals.update(eval_id, **kwargs) -> EvalUpdateResponse { id, created_at, data_source_config, 4 more }
POST/evals/{eval_id}

Update certain properties of an evaluation.

ParametersExpand Collapse
eval_id: String
metadata: Metadata

Set of 16 key-value pairs that can be attached to an object. This can be useful for storing additional information about the object in a structured format, and querying for objects via API or the dashboard.

Keys are strings with a maximum length of 64 characters. Values are strings with a maximum length of 512 characters.

name: String

Rename the evaluation.

ReturnsExpand Collapse
class EvalUpdateResponse { id, created_at, data_source_config, 4 more }

An Eval object with a data source config and testing criteria. An Eval represents a task to be done for your LLM integration. Like:

  • Improve the quality of my chatbot
  • See how well my chatbot handles customer support
  • Check if o4-mini is better at my usecase than gpt-4o
id: String

Unique identifier for the evaluation.

created_at: Integer

The Unix timestamp (in seconds) for when the eval was created.

data_source_config: EvalCustomDataSourceConfig { schema, type } | { schema, type, metadata} | EvalStoredCompletionsDataSourceConfig { schema, type, metadata }

Configuration of data sources used in runs of the evaluation.

Accepts one of the following:
class EvalCustomDataSourceConfig { schema, type }

A CustomDataSourceConfig which specifies the schema of your item and optionally sample namespaces. The response schema defines the shape of the data that will be:

  • Used to define your testing criteria and
  • What data is required when creating a run
schema: Hash[Symbol, untyped]

The json schema for the run data source items. Learn how to build JSON schemas here.

type: :custom

The type of data source. Always custom.

class Logs { schema, type, metadata }

A LogsDataSourceConfig which specifies the metadata property of your logs query. This is usually metadata like usecase=chatbot or prompt-version=v2, etc. The schema returned by this data source config is used to defined what variables are available in your evals. item and sample are both defined when using this data source config.

schema: Hash[Symbol, untyped]

The json schema for the run data source items. Learn how to build JSON schemas here.

type: :logs

The type of data source. Always logs.

metadata: Metadata

Set of 16 key-value pairs that can be attached to an object. This can be useful for storing additional information about the object in a structured format, and querying for objects via API or the dashboard.

Keys are strings with a maximum length of 64 characters. Values are strings with a maximum length of 512 characters.

class EvalStoredCompletionsDataSourceConfig { schema, type, metadata }

Deprecated in favor of LogsDataSourceConfig.

schema: Hash[Symbol, untyped]

The json schema for the run data source items. Learn how to build JSON schemas here.

type: :stored_completions

The type of data source. Always stored_completions.

metadata: Metadata

Set of 16 key-value pairs that can be attached to an object. This can be useful for storing additional information about the object in a structured format, and querying for objects via API or the dashboard.

Keys are strings with a maximum length of 64 characters. Values are strings with a maximum length of 512 characters.

metadata: Metadata

Set of 16 key-value pairs that can be attached to an object. This can be useful for storing additional information about the object in a structured format, and querying for objects via API or the dashboard.

Keys are strings with a maximum length of 64 characters. Values are strings with a maximum length of 512 characters.

name: String

The name of the evaluation.

object: :eval

The object type.

testing_criteria: Array[LabelModelGrader { input, labels, model, 3 more } | StringCheckGrader { input, name, operation, 2 more } | TextSimilarityGrader { evaluation_metric, input, name, 2 more } & { pass_threshold} | 2 more]

A list of testing criteria.

Accepts one of the following:
class LabelModelGrader { input, labels, model, 3 more }

A LabelModelGrader object which uses a model to assign labels to each item in the evaluation.

input: Array[{ content, role, type}]
content: String | ResponseInputText { text, type } | { text, type} | 3 more

Inputs to the model - can contain template strings. Supports text, output text, input images, and input audio, either as a single item or an array of items.

Accepts one of the following:
String

A text input to the model.

class ResponseInputText { text, type }

A text input to the model.

text: String

The text input to the model.

type: :input_text

The type of the input item. Always input_text.

class OutputText { text, type }

A text output from the model.

text: String

The text output from the model.

type: :output_text

The type of the output text. Always output_text.

class InputImage { image_url, type, detail }

An image input block used within EvalItem content arrays.

image_url: String

The URL of the image input.

type: :input_image

The type of the image input. Always input_image.

detail: String

The detail level of the image to be sent to the model. One of high, low, or auto. Defaults to auto.

class ResponseInputAudio { input_audio, type }

An audio input to the model.

input_audio: { data, format_}
data: String

Base64-encoded audio data.

format_: :mp3 | :wav

The format of the audio data. Currently supported formats are mp3 and wav.

Accepts one of the following:
:mp3
:wav
type: :input_audio

The type of the input item. Always input_audio.

A list of inputs, each of which may be either an input text, output text, input image, or input audio object.

Accepts one of the following:
String

A text input to the model.

class ResponseInputText { text, type }

A text input to the model.

text: String

The text input to the model.

type: :input_text

The type of the input item. Always input_text.

class OutputText { text, type }

A text output from the model.

text: String

The text output from the model.

type: :output_text

The type of the output text. Always output_text.

class InputImage { image_url, type, detail }

An image input block used within EvalItem content arrays.

image_url: String

The URL of the image input.

type: :input_image

The type of the image input. Always input_image.

detail: String

The detail level of the image to be sent to the model. One of high, low, or auto. Defaults to auto.

class ResponseInputAudio { input_audio, type }

An audio input to the model.

input_audio: { data, format_}
data: String

Base64-encoded audio data.

format_: :mp3 | :wav

The format of the audio data. Currently supported formats are mp3 and wav.

Accepts one of the following:
:mp3
:wav
type: :input_audio

The type of the input item. Always input_audio.

role: :user | :assistant | :system | :developer

The role of the message input. One of user, assistant, system, or developer.

Accepts one of the following:
:user
:assistant
:system
:developer
type: :message

The type of the message input. Always message.

labels: Array[String]

The labels to assign to each item in the evaluation.

model: String

The model to use for the evaluation. Must support structured outputs.

name: String

The name of the grader.

passing_labels: Array[String]

The labels that indicate a passing result. Must be a subset of labels.

type: :label_model

The object type, which is always label_model.

class StringCheckGrader { input, name, operation, 2 more }

A StringCheckGrader object that performs a string comparison between input and reference using a specified operation.

input: String

The input text. This may include template strings.

name: String

The name of the grader.

operation: :eq | :ne | :like | :ilike

The string check operation to perform. One of eq, ne, like, or ilike.

Accepts one of the following:
:eq
:ne
:like
:ilike
reference: String

The reference text. This may include template strings.

type: :string_check

The object type, which is always string_check.

class EvalGraderTextSimilarity { pass_threshold }

A TextSimilarityGrader object which grades text based on similarity metrics.

pass_threshold: Float

The threshold for the score.

class EvalGraderPython { pass_threshold }

A PythonGrader object that runs a python script on the input.

pass_threshold: Float

The threshold for the score.

class EvalGraderScoreModel { pass_threshold }

A ScoreModelGrader object that uses a model to assign a score to the input.

pass_threshold: Float

The threshold for the score.

Update an eval

require "openai"

openai = OpenAI::Client.new(api_key: "My API Key")

eval_ = openai.evals.update("eval_id")

puts(eval_)
{
  "id": "id",
  "created_at": 0,
  "data_source_config": {
    "schema": {
      "foo": "bar"
    },
    "type": "custom"
  },
  "metadata": {
    "foo": "string"
  },
  "name": "Chatbot effectiveness Evaluation",
  "object": "eval",
  "testing_criteria": [
    {
      "input": [
        {
          "content": "string",
          "role": "user",
          "type": "message"
        }
      ],
      "labels": [
        "string"
      ],
      "model": "model",
      "name": "name",
      "passing_labels": [
        "string"
      ],
      "type": "label_model"
    }
  ]
}
Returns Examples
{
  "id": "id",
  "created_at": 0,
  "data_source_config": {
    "schema": {
      "foo": "bar"
    },
    "type": "custom"
  },
  "metadata": {
    "foo": "string"
  },
  "name": "Chatbot effectiveness Evaluation",
  "object": "eval",
  "testing_criteria": [
    {
      "input": [
        {
          "content": "string",
          "role": "user",
          "type": "message"
        }
      ],
      "labels": [
        "string"
      ],
      "model": "model",
      "name": "name",
      "passing_labels": [
        "string"
      ],
      "type": "label_model"
    }
  ]
}